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Note 

A Computational Procedure for Obtaining the Poles of a Spherical 

Harmonic of Order N; Application to the Multipole Expansion of 

Electrostatic Interaction* 

The solution for the poles of a general spherical surface harmonic is analyzed with 
application to the multipole calculation for the interaction of two charge distributions. 
The theoretical advantages are discussed and have been verified in test calculations 
using a FORTRAN program available on request. 

1. INTRODUCTION 

The energy of the electrostatic interaction of two nonoverlapping charge 
distributions A and B can be written as a double Taylor series of l/l rB - r, I 
about the two origins 0, and OB in the following notation, which is convenient 
for subsequent use: 

where 

E NA.NB 
zzz 

EAB= f i ENA.NBY NB = N - NA , (1) 
N=O NA=O 

{“zB, IA * IBhB) 

NA 

* $cl (s&A> ’ v~> * E (s&B) * vB)(l/(/ rB 
i=l 

V, = i e,(a/ax,,) 
i=l 

- (2) 

(3) 

* We express our appreciation to the National Institute of Health, which has supported this 
work under Grant 1 ROl GM2O436-01. 
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sdny> = el , 1 < i < n,, 

e2 , n,, + 1 < i < 4, + nv2 

- e3, *,1 + G3 + 1 < i < n,, + n,, + ny3 = NY 

(y = A or B, i = l,..., N,,), 

111 

(4) 

where pv is the charge density of system y and the ki defines an orthogonal right- 
handed basis set. The expression for ENA,,,B is of the form [l] 

E NA.NB = IX I-P(NA+%)-~ .+ yNA, NB(x), (5) 

3 

YNA,NB(x) = 1 c(nA , nB) n xFAi+“Bi, (6) 
(“A%) i=l 

where x = OS - OA , YNA,NB is a homogeneous polynomial of degree NA + NB , 
and EN*.N~ satisfies Laplace’s equation and is, therefore, a spherical harmonic 
as defined by Hobson [2a]. Thus, the theorem establishing the existence of unique 
real poles can be app1ied.l It follows, that for each center and for each NA , NB 
there exists a unique set of real pole vectors (characteristic directions) 
N A s, ,.-., sNA , NA SF,..., s% and multipole moments pLNA), p(sN~’ such that the sum of 

directional derivatives in Eq. (2) can be replaced by one directional derivative: 

ENS, NB = {paNA’ * &Q/(NA! * NB!)] 

NA 
* n (S*YA - vA) * ; @ ’ ‘)(‘/(I ‘B - ‘A I))] * (7) 

i=l i=l rv=O, 

Clearly, these characteristic directions and multipole moments are determined by 
E NA,,Q and EO,N . 

Since in geieral, Eq. (2) is a sum of (Na + l)(NA + 2)(NB + l)(Ns + 2)/4 
directional derivatives, it is more efficient to use Eq. (7) to obtain ENA,NB than 
to use Eq. (2). It will be shown that the solution for the characteristic directions 
and multipole moments of Eq. (7) and the calculation of EAB by Eqs. (1) and (7) 
involves approximately the same computer time as the calculation of EAB by 
Eqs. (1) and (2) for one orientation, and becomes overwhelmingly advantageous 
as the number of orientations for the same charge distributions increases. 

An added advantage of the form (7) for a spherical harmonic and of writing 
Eq. (2) as a sum of terms that are special cases of the form (7) lies in the fact 

1 Hobson [2 Theorem 8, Eq. (9), p. 1271 gives the result for any spherical harmonic Y&C, y, z): 
r,p/ax, ajay, a/az)(l/r) = (-1>“((24!/2”n!)(l/r zn+l) Y,(x, y, z). On page 135 he shows that the 
Y,, on the right-hand side is not unique and proceeds to show on page 135 f f .  that the pair of 
equations Y,(x, y, z) = 0, x2 + y2 + z* = 0 defines a unique set of real poles. 
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that it leads naturally to an extension where the inclusion of the induced moments 
involves the same computational procedure [3]. 

In Sections 2 and 3, the procedure to obtain the poles and multipole moments 
of any spherical harmonic of order N will be described, and in Section 4, the 
application of this procedure to ENAs will be presented. 

2. DETERMINATION OF THE POLES OF A SPHERICAL HARMONIC 

It has been shown [2b], that if I x I-2N-1 * Y,(x) is a spherical harmonic of 
order N, then the ith pole will be 
conjugate) 

si = Vi/l vi I, 

given by (the asterisk stands for the complex 

where (xri, x 2i, xsi) is the ith simultaneous root of the equations 

yN(x) = 0, 

2 xi2 = 0. 

In general, Eq. (9) can be written in the form 

Y,‘(x) = x,Y;;_,(x), 

(8) 

(9) 

(10) 

(114 

Y,‘(x), Y;;_,(x), polynomials of degrees N, N - 1, 
respectively, of even order in x3 . (1 lb) 

It is convenient to eliminate x3 from Eq. (11) by Eq. (10) in order to replace the 
pair of equations by a single equation, a homogeneous polynomial in x1 , x2 , 
in a fashion to be described: 

P&Xl ) x2) = 5 cixlixy--i = 0. 
i=O 

(12) 

Three cases are considered: 

Case even-odd. Neither YN’ nor Yi-i = 0. Each side of Eq. (11) is squared 
and the roots of the resulting equation: 

PdXl , x2> = WN’(X1 3 x2 , x3(.% 3 x2N2 

- (x3(x1 , x2N2 m-,(x, , x2 , x3(x1 7 x2)N2, A4 = 2N, (13) 

are to be found. 
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Case even. Yiel = 0. In this case 

PA&, 9 x2) = Ydx, 9 x2 3 x2(x1 > x3), M = N. (14) 

This case always arises whenever the system has a symmetry plane and e3 is chosen 
perpendicular to it. 

Case odd. Y,’ = 0. In this case, there is a root for which x, = 0 and 

Pdx, 3 x2) = cL(~~, 2 x2 > X&l 9 x2>), M=N-1. (15) 

The following step will require the separation of the trivial roots of PM of the 
form 

(x1 , 0) and (0, ~3, x1, x2 # 0, otherwise arbitrary. (16) 

These will be present if and only if there exist positive j, and/or j, such that cj = 0 
if j < j, and/or if A4 - j < j, . In these cases (0, x,) will be a j,-fold and/or (x1 , 0) 
will be a j,-fold root of P, . 

Consider, therefore, the reduced equation of order M - j, - j, : 

M’ 

P’M (Xl > x2) = c C&j, * Xii * xz”‘- = 0 (M’ = M - j, - j,). (17) 
i=O 

Since P,,,,I is homogeneous and there are no roots of the form (16), it follows that 
if (x1 , x2) is a root then x1 , x2 f 0 and (x1 , x2) are determined only up to a ratio. 
Therefore, set xe = 1 and solve for the roots of 

PQX,) = f ci+jl * x;, (M’ = M - j, - j,), 
i=O 

(18) 

to obtain the roots of PM not of the form (16). 
It follows from Eq. (10) that every root (x1, x2) of PM yields 

x3 = -+(-x1” - x22)1/2. (1% 

The conditions under which each root of PIM yields a unique set of conjugate 
roots or 2 sets, 

{(Xl , x2 , + (-xl2 - x22)1’2), (xl*, x2*, + (-xl2 - x22)1’2*)), 

{(Xl ) x2 ) - (-x12 - x,2)1/2), (xl*, x2*, - (-x12 - x2”)“2*)}, 

will now be discussed. 

(20) 

In case even-odd, it is necessary to select from (20) those roots that are roots 
of Eqs. (9) and (lo), since the solution of PM = 0 will introduce roots that are 
not roots of Eqs. (9) and (10). 
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A simple lemma is proved first: 

LEMMA. If (x1 , x2) is a root of PM of Eq. (13) and (x1 , x2 , fx3(x1 , x2)) are 
both r-fold roots of Eq. (9), or equivalently, (11) and x3(x1 , x2) # 0, then (x1 , xz> 
is a 2r-fold root of PM . 

Proof. Y,’ and YG-, are both invariant upon a change in sign of x, . But 
YN’ = x3Y,&-r can be invariant only if YN’ = 0. Since x, # 0, YA-, = 0. It 
follows, that (x1 , XJ must be an r-fold root of Y,’ and Y&, , and thus, a 2r-fold 
root of PM = ( YN’)2 - x3(x1 , xJ2 * ( Y;-Jz. 

Remark. If x, , x2 are both real, this always is the case since then x3 must be 
pure imaginary, thus, (x1 , x2 , x3)* = (x1 , x2 , -x3). 

The following cases will be considered: 

1. x, = 0. In this case there is a unique set of conjugate roots: (xl , x2 , 0), 
(Xl *, x2 *, 0). 

2. xQ # 0; (x1 , x2) real. According to the remark, (x1, x2) is a 2r-fold root 
OfPhI, but (~1, x2 , x&1 , x2)) is only an r-fold root of Eq. (11). Therefore, it is 
necessary to discard r of the 2r occurrences. Note that since (x1 , x2) is only deter- 
mined up to a ratio, x, , x2 in the trivial case (16) can always be chosen as real. 

3. x, # 0; (x1 , x2) complex. Then, it is necessary to substitute one of the 
conjugates from each of the two sets of (20) into Eq. (9) with the following two 
possible results: 

(a) One root of PM must be rejected since it fails to satisfy Eq. (9). 
(b) Both sets satisfy Eq. (9). It follows from the Lemma that (x1 , x2) is 

a 2r-fold root of PM and that r of these occurrences must be removed. 

In case even and case odd, there is no squaring, which can introduce false 
occurrence of roots. However, if (x1, xz> is real, the use of Eq. (19) would yield 
two identical sets in (20). Therefore, only one set has to be generated. 

3. DETERMINATION OF THE MULTIPOLE MOMENTS 

The multipole moments can be obtained by the equation 

p’N’ = 
1 x0 I--2N-1 * yN(xO)//fi bi ’ v)(l/l x I)ix 

i=l 
x /Ni/s 

-0 
(20 

where the value of x,, is chosen arbitrarily. 
Since pcN) should be independent of the choice of x0 , by computing pcN) at 

more than one choice of x0, a consistency check is obtained on the poles. 
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4. THE EXPLICIT FORM OF EQUATIONS (9) AND (10) FOR ENAs 

If the spherical harmonic in question is ENA,o , the expansion of the directional 
derivatives according to [l, Eq. (lo)] shows that ENApo of Eq. (2) is a linear com- 
bination of products of the (si + x) and/or the (si - sj). Use of [l, Eq. (14)] shows 
that [ x jtN4f1 * ENA, is a homogeneous polynomial in which the only term not 
containing 1 x I2 as a factor is 

z [-(21 - l)] * ;i (Sk * x). 
Ll k=l 

(22) 

From Eqs. (2), (4), (22), it follows that the Eq. (9) ENAs = 1 x j-2N-1 Y,(x) = 0 
can be replaced by the simpler 

c Z,(n,) * fi zp = 0, 
(*A} $=l 

ZA(%i), cf., Eq. (3). 

GW 

(23b) 

Clearly, in the calculation of p cN), the YN(~) cannot be simplified as in the calcula- 
tion of the characteristic directions by Eqs. (10) and (23). 

5. DISCUSSION 

The procedure to obtain the poles and multipole moments of a surface spherical 
harmonic of order N has been analyzed in detail and its application to the problem 
of the multipole expansion of electrostatic interaction has been given. 

The polar formalism has the advantage that it permits an extension to the 
problem of the interaction of polarizable charge distributions within the framework 
of the same formalism [3]. 

The proposed procedure has the following advantage. Since in absence of zero 
integrals Eq. (2) has (NA + 1) * (N,., + 2) * (NB + 1) * (NB + 2)/4 terms, the 
use of Eq. (2) requires approximately Na2 * NB2/4 times more similar calculations 
than Eq. (7). This is increased when it is extended to the induced moment problem. 

The only added work required by the new procedure is the following single 
calculation to obtain the characteristic directions and multipole moments: 

(i) the solution for the complex roots of a polynomial of degree N or 2N 
(depending on whether the charge distribution has a symmetry plane or not); 

(ii) the evaluation of EN,o by Eq. (2). 
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A CDC FORTRAN program of the above procedure has been written and is 
available on request. As a check on its accuracy, the characteristic directions and 
multipole moments of four point charges located at the four vertices of a tetra- 
hedron were computed up to order 10. 

It was found that: 

1. The multipole moments computed at different choices of x,, agreed at 
least in nine-decimal digits; 

2. The EAB value computed by Eqs. (1) and (7) and the EAB value computed 
by the Coulomb law (at distances great enough to expect convergence with N < 10) 
agreed to seven- to nine-decimal digits, depending on the orientation. The dis- 
crepancy of two-decimal digits is accounted for the loss of figures through sub- 
traction in the Coulomb calculation; 

3. The computation of all the characteristic directions and multipole 
moments up to order 10 took 7.8 set on a CDC 6600 computer; the computation 
of EAB (using only ENAsNB with NA + NB < IO) with Eq. (7) took 0.65 set, using 
Eq. (2) it took 6.6 sec. Thus, even with the high symmetry of the tetrahedron, the 
time requirement decreased by a factor of 10 and the new procedure altogether 
took about the same time even when the generated characteristic directions and 
multipole moments were used only once. 
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